F(3x)=3x^2+3x-4

Simple and best practice solution for F(3x)=3x^2+3x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(3x)=3x^2+3x-4 equation:



(3F)=3F^2+3F-4
We move all terms to the left:
(3F)-(3F^2+3F-4)=0
We get rid of parentheses
-3F^2+3F-3F+4=0
We add all the numbers together, and all the variables
-3F^2+4=0
a = -3; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-3)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-3}=\frac{0-4\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-3} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-3}=\frac{0+4\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-3} $

See similar equations:

| 3=-2x+21x= | | 4=4.5^x | | 9^x=3^3x-4 | | 3/4n-5=-2 | | 1.9x+x=92.8 | | 4x+2(x-15)=12 | | 2x-1=x=2 | | 2x+2(x-20)=0 | | 2x+2(x-20=0 | | |x-6|=3 | | x6=7 | | 0.4(2x+0.3)=1/ 3(6x−7.2) | | 7=4+v/18.75 | | 1/2^x=5/4 | | -2(2t+1)=14 | | 7x+2(3x-7)=64 | | -3.1+u/2=-28.7 | | (5+2i)+(7+i)=0 | | 7x+4(3x+11)=177 | | 1/6x+4=6 | | 2x-10(30)=2 | | 3x+3(7x-12)=156 | | 3x/4+2/3=3/5 | | 7r+8=19 | | -1-4x=-3+14x | | 4.3=-4y+29.9 | | x-10+2x+55=180 | | 1/6x+5=7 | | -4y+29.9=4.3 | | (X+1)(x-3)(x+2)(x+4)=24 | | -11+x+2x=7 | | -3x+68=x |

Equations solver categories